Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Sci Technol Int ; 28(6): 476-488, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34058894

RESUMO

This study aimed to microencapsulate Lactobacillus rhamnosus (L. rhamnosus) ATCC 7469 with whey protein concentrate (WPC), maltodextrin and trehalose by spray drying and to assess the impact of microencapsulation on cell viability and the properties of the dried powders. Spray-drying conditions, including inlet air temperature, air flow rate and feed pump, were fixed as independent variables, while probiotic survival, moisture content, water activity and effective yield were established as dependent variables. The survival of encapsulated L. rhamnosus by spray drying was optimized with response surface methodology, and the stability of the powder was assessed. The optimum spray-drying conditions were an inlet air temperature, air flow rate and feed pump rate of 169 °C, 33 m3/h and 16 mL/h, respectively, survival of 70%, air aspiration of 84% and outlet air temperature of 52 °C, achieving an overall desirability of 0.96. The physicochemical and structural characteristics of the produced powder were acceptable for application with regard to residual water content, hygroscopicity, water activity, and particle size. The results indicated that a protein-trehalose-maltodextrin mixture is a good wall material to encapsulate L. rhamnosus, showing important thermal protection during the drying process and increasing survival. However, a decrease in this capacity is observed at an air outlet temperature of approximately 101 °C. The possible effects of the wall materials and the drying conditions on survival are also discussed.


Assuntos
Lacticaseibacillus rhamnosus , Dessecação/métodos , Polissacarídeos , Pós/química , Secagem por Atomização , Trealose , Água , Proteínas do Soro do Leite
2.
J Food Sci Technol ; 58(5): 2007-2018, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33897037

RESUMO

The stability of betalains (Bet) encapsulated in cryogels made with a mixture of albumin (ALB) and albumin-pectin (ALB-PEC) as wall materials were evaluated during storage at 32% and 83% relative humidity (RH) at several different temperature conditions (4 °C, 30 °C and 40 °C). The retention of betalains (betanin + isobetanin) and phenolic compounds and the antioxidant activity were determined by high-performance liquid chromatography, the Folin-Ciocalteu method and radical ABTS*+ capture methodology. The color parameters and images of the encapsulated betalains were obtained. Cryogels prepared with ALB at 32% RH and at 4 °C provided betanin and isobetanin retention of 72% and 82%, with half-life times of 108 and 165 days, respectively. The antioxidant activity and phenolic compounds showed retention greater than 70% during storage at 32% RH at all temperatures. Cryogels prepared with ALB-PEC also conferred high retention percentages of phenolic compounds at 83% RH, but this high RH caused a significant decrease in the retention of betalains. Both ALB and ALB-PEC improved betalain stability during storage compared with the extracts without encapsulating. Therefore, cryogels could be used as protection matrices for betalains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...